| 1. | This article takes the lagrange equation as the principle , establishes mathematics modeling to the inertia brake vibration when it brakes , then simulates it with matlab . this paper educed the relation equations between , which are the inertia brake ' s friction coefficient of the brake ring and the friction disk , the mean radius , the braking force , rotation inertia of the driving top and the spline shaft , spiral climbing angle of the brake ' s concave - convex helicoid , the mean effort radius of the concave - convex helicoid , elasticity coefficient of the spring , quality of the driving top and the spline shaft , rotations inertia of the brake ' s rotation part besides the driving top and the spline shaft , suppresses sleeve . provides the theory basis for the inertia brake structure optimization 本文以拉格朗日方程为理论基础,对惯性制动器在制动时的振动进行数学建模,然后用matlab对其进行仿真,得出了惯性制动器在制动时振动角频率分别与制动环和摩擦片之间的摩擦系数、制动力的平均半径、主动顶和花键轴的转动惯量、惯性制动器的凹凸螺旋面的螺旋升角、凹凸螺旋面平均作用力的半径、弹簧的弹性系数、主动顶和花键轴的质量、惯性制动器除主动顶和花键轴外其他部分的转动惯量和、顶压套的质量等惯性制动器各零部件的物理参数之间的关系,为惯性制动器的结构优化提供了理论依据。 |